The Richard Stockton College of New J ersey Mathematical Mayhem 2013
 Group Round

March 23, 2013

Name: \qquad
Name: \qquad
Name: \qquad
High School: \qquad

Instructions:

- This round consists of $\mathbf{5}$ problems worth $\mathbf{1 6}$ points each for a total of $\mathbf{8 0}$ points.
- Each of the 5 problems is free response.
- Write your complete solution in the space provided including all supporting work.
- No calculators are permitted.
- This round is $\mathbf{7 5}$ minutes long. Good Luck!

OFFICIAL USE ONLY:

Problem \#	1	2	3	4	5	Total
Points Earned						

\rightarrow Group Round a

Problem 1. A polyomino is a contiguous shape formed by gluing together squares edge to edge. A polyomino made up of 4 squares is called a tetromino. There are 5 different tetrominoes, as shown below.

Flipping or rotating a tetromino does not make it a different tetromino. For instance, the four tetrominoes shown below are all considered to be the same tetromino.

A polynomino made up of 5 squares is called a pentomino. How many different pentominoes are there?
Solution to Question 1. There are 12 pentominoes, pictured below.

Problem 3. How many total squares are there in a 100×100 grid? How many total squares are there in a $\mathrm{n} \times \mathrm{n}$ grid? For example, there are 5 squares in the 2×2 grid shown below.

Solution to Question 3. The number of squares in an $n \times n$ grid is the sum

$$
1^{2}+2^{2}+\ldots+(n-1)^{2}+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

For $n=100$, this is 338350 .

Problem 4.

(A.) When I sum five numbers in every possible pair combination, I get the values:

$$
0,1,2,4,7,8,9,10,11,12 .
$$

What are the original 5 numbers?
(B.) When I sum a different set of five numbers in every possible group of 3 , I get the values:

$$
0,3,4,8,9,10,11,12,14,19 .
$$

What are the original 5 numbers?
(C.) Is it possible to find a set of 5 numbers that when summed in every possible pair combination results in the sums

$$
1,2,3,4,5,6,7,8,9,10 ?
$$

Is it possible to find a set of 5 numbers that when summed in every possible group of 3 results in those sums? For each situation, find an example or prove it's impossible.

Solution to Question 4.

(A.) The sum of the pairwise sums is 64 , and this counts each of the original five numbers four times, so the sum of the original five numbers is 16 . The sum of the largest two of the original five numbers is 12 , and the sum of the smallest two is 0 , so the middle number is 4 . (i.e. $16-12-0=4$) The sum of the largest and middle is the second largest sum, 11, so the largest must be 7 , and the second largest is 5 . (i.e. $12-7=5$) In order for the second-smallest sum to be 1 , one of the numbers has to be -3 , so the numbers are $-3,3,4,5,7$.
(B.) The sum of the triples is 90 , and this counts each of the original five numbers six times, so the sum of the original five numbers is 15 . The largest triple sum is 19 , so the two not included sum to -4 . The next-largest triple is 14 , so the pair not included sum to 1 , etc. So the pairwise sums are $-4,1,3,4$, $5,6,7,11,12,15$. The sum of the largest two of the original five is 15 , and the sum of the smallest two is -4 , so the middle number is 4 . The sum of the largest and middle is 12 , so the largest must be 8 , and the second largest must be 7 . The sum of the smallest and middle is 1 , so the smallest must be -3 , so the numbers are $-3,-1,4,7,8$.
(C.) No, because the sum of 1-10 must be four times the sum of the five numbers, but the sum of 1-10 is 55 , which is odd, and so it is not a multiple of four (as would be required for sums of pairs) or a multiple of six (as would be required for sums of triples). Moreover, any sequence of ten consecutive integers sums to an odd number, so no such sequence is possible.

